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The plane problem of the formation stratification in a wedge-shaped trough filled with a homogeneous incompressible liquid is 
considered when a constantly acting source of admixture is inserted in the bottom of the trough. The low intensity of the induced 
diffusive and convective flows which arise enables one to use the methods of perturbation theory. Application of the method of 
integral transforms to the resulting linearized systems of equations gives the solution for the velocity and admixture fields in the 
form of quadrature formulae, on the basis of which the characteristic quantities and scales of the flows which arise can be 
determined. © 1999 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

The processes of the formation of stratification in a trough are considered. The trough is formed by 
two semi-infinite inclined impermeable walls and is filled with a homogeneous incompressible liquid. 
At the initial instant of time, a source of salt at the bottom, in the form of an arc of a circle of radius 
a with an aperture angle 2a (Fig. 1), which is characterized by a coefficient of salt release Ys and a value 
S00 of the salt concentration on its surface, is released. 

The unsteady problem of determining the velocity and salinity fields which will be formed in the trough 
is considered in a two-dimensional formulation. In a polar system of coordinates, shown in Fig. 1, the 
boundary conditions for the source are written in the form 

ksP~S+¥s(S-Soo)~ = 0 (1.1) 
di" Jr=a 

where S is the required distribution of the salt in the trough and ks is the diffusion coefficient of the 
salt. The no-slip condition for the velocity is satisfied on the bottom and on the inclined walls. 
Furthermore, the impermeability condition for the salt is satisfied on the inclined walls. The flow develops 
in the field of the gravitation force g. All perturbations decay at infinity. 

After the source of salt has been released, the hydrodynamic equilibrium of the liquid is destroyed. 
This is due to the fact that, in the first stages of the development of the flow, the diffusion mechanism 
forms a density distribution with isohalines (equisalinity lines) in the form of concentric circles with 
their centre at the origin of the polar system of coordinates p, tO. At the same time, only density 
distributions with horizontal isohalines are stable in a gravitation force field. As a result of this, a flow 
rises under the action of an Archimedean force which tends to "straighten out" the isohalines. 

If there were no inclined impermeable walls, the isohalines at a sufficient distance from the source 
would take the form of a horizontal planes since, in the majority of practical situations, the characteristic 
times of inertial processes under the action of the gravity force are much shorter than the characteristic 
times of diffusion processes. However, the presence of the impermeable inclined walls does, in fact, 
change the nature of the flow considerably since the condition that there is no flux of salt on the inclined 
walls leads to a state of affairs where, close to the surface of these walls, the lines of equisalinity are 
always normal to them. As a result of this, a mechanism for the generation of a flow close to the wall, 
which compensates for the inclination of isohalines to the horizontal, and for the generation of a 
descending flow in the central domain of the trough which closes a vortex pattern, is constantly present 
in the flow. 

In writing down the equations of fluid dynamics, condition (1.1) enables us to avoid having to introduce 
a source term and to use the system of standard equations in the Boussinesq approximation 
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F i g .  1. 

~u I ~t + (uV)u = -Vp + v&u + gS, V-u=O 

(1.2) 
as~at + u • V S  = k~AS 

Here, u is the velocity field andp is the pressure, after subtracting the hydrostatic pressure, normalized 
to P0, the density of the homogeneous liquid at the instant when the source is released. In (1.1) and 
(1.2), the salinity is represented by the coefficient of salt contraction and is therefore a dimensionless 
quantity. In this case, the density of the medium is expressed in terms of the salinity using the linearized 
equation of state with constant coefficients p = p0(1 + 13S), where 13 is the coefficient of salt contraction. 

2. CHOICE OF THE FORM OF SOLUTION 

We will seek the solution of problem (1.1), (1.2) in the form of Fourier series in the angle ~o (the 
summation is from n = 1 to n = oo) 

nrap 
u= ~, u.(r,t)cos , p= Po(r,t)+ ~, pn(r,t)cos nrap 

ot Ot 

(2.1) 

u =~ ,  un(r,t)sin nxq>, S = S o ( r , t ) + Y .  Sn(r,t)cos trmO 
OL (X 

where u, u are the radial and azimuthal components of the velocity. 
Representation (2.1) guarantees that the boundary conditions on the inclined wails are satisfied. 
Due to the slowness of the transient process and the low intensity of the flows induced by transport 

phenomena close to the inclined walls, the problem is solved using the method of successive approxi- 
mations, in which the Fourier coefficients in (2.1) are expanded in series in powers of the smallness of 
the effect of the non-linear terms of Eqs (1.2) 

S , ( r , t )  = S~°)+ S~l)+ ~2) + ... (2.2) 

Similar series also hold for Un, un andpn. 
By substituting (2.2) into (1.1), (1.2) we can obtain a set of successive systems of equations and bound- 

ary conditions for Sn (i), u~ ), o~ 0 and pn (0 where the general conditions at infinity and the initial conditions 

L,(i) - - .  (i) = s(mi) m (i) n -u~  p~ =0  when r - - ~  and when t = 0  

are satisfied for all i. 
Furthermore, the additional boundary condition 

a t i ) la  r U n It=a= 0 

follows from the second equation of (1.2). 
For the terms of the zeroth approximation, a system of equations of the form 

as/0, Ca s,o, aslo, ( 
r - 7 - ) '  . . . .  

(2.3) 
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is obtained with the initial and boundary conditions 

S~°)(r,O)=O, $~0)(--,t) = 0 

t,  a ~ ' + , : ~ 0 , /  " "s'°' o ~1 I = ~floo, o ,  ~ ) 0 
dr L_-° t or ~r=a 

I t  is c lear  t h a i  u (°) = o (°) = Sn (°) = 0 f o r  n = 1, 2 , . . . .  
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3. CONSTRUCTION OF THE SOLUTION IN THE FORM OF 
QUADRATURES USING INTEGRAL TRANSFORMS 

The solution of Eq. (2.3) is found by the method of integral transforms. We introduce the function 

G~°)(~ 't) = 7 ;~n 0)(r't) ~(r,~,t)p(r)dr 
Q 

where ~(r, ~, t) is the kernel of the integral transform and p(r) is a weighting function. 
On applying the integral transform, which defines the function G~°)(~, t), to system (2.3) and imposing 

the condition that the transformed equation should not contain integral terms, we obtain the relations 

p= r ,  ~2~,ar 2 +r---~--r + l~ r 2 t a  ) ) . = 0 ,  =0,1,2,.. 

~a~ °' _ ..~a<0,+,.(__~°~ ~,._rs~0, a~°" ~" 
at --'"~"-" ar ~a 

whence, using the initial and boundary conditions, we obtain 

G~°) = 0, n = l , 2  .... 

'tsS~ ) cl°>(~,t) =,, ~--/~ -- ~°' (°,g×exr~-k, Ut)-i) 

Here, the kernel ,.~0 ~°) is the solution of the boundary-value problem 

+7 +~2 ,~0)--0 k s +¥s ,,~0) =0 
r i g _ -  a 

Applying to the solution of Eq. (3.2) to the normalization condition 

. ~ r ~ _ _  =1 
~r  r=a 

(3.1) 

we finally obtain 

(3.2) 

where J and N are Bessel Neuman functions. 
Now, having the solutions for the function Gh°)(~, t), the form of the kernel K<0 °) and the weighting 

function p, it merely remains to invert the integral transform in order to obtain the solution 
S~o°)(r, t). 

= k: Jt t2--~-=J j 
k~ = J, (a~)lVo(r~)- Xoir~)N~ (aiD, k2 = Jo(~)No(r~) -  Jo(r~)tVo(alD 
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It is well known [2] that, if 

g(~) = ~ ~(r,~)g(r)dr, g(r)¢ ~eZ(a, oo) 
t l  

where w(r, ~) is the solution of the corresponding initial boundary-value problem, the following relation 
holds 

g(r) = ~ g(~)¥(r,~)do(~) 

in which the last integral is defined in the Lebesgue--Stieltjes sense. 
The differential of the spectral function ~(~) is determined by taking the limit 

do([)= 1 lim Imm.(~+ie)d~ 

where moo is the equation of the limiting perimeter which bounds the domain of the solutions of class 
~2(a, ~) of the singular Sturm-Liouville problem. 

Omitting the intermediate operations involved in calculating the differential of the spectral function 
cr(~), we now present the final result for the inverse transform 

2 ay; S00 (3.4) S(o°)(r,t) = A O~ Ko(°)(r,~)(e -k'~2, -])d~, A 0 = 
ks o 

£o(°)ffi~ a~ki- k s a~.lj(a~)- Jo(a~) + a~It(a~)- No(a~) 

This approximation describes the initial stage of the formation of the flow when the salinity distribution 
is exclusively created by diffusion of the particles in the liquid and depends solely on the radial coordinate 
r and there is no motion in the medium. As a result of this, a salinity distribution is formed with isohalines 
which are arcs of circles with centre at the origin of coordinates, the hydrostatic equilibrium of the liquid 
is destroyed and a flow arises which compensates for both the deficit of salinity close to the inclined 
walls of the trough as well as the excess salinity at the centre of the trough. 

After the zeroth approximation of the salinity distribution, S (°), has been calculated, we now determine 
which velocity field arises in the medium as a reaction to this zeroth approximation. The system of 
equations for the first approximation of the velocity field with the initial and boundary conditions 

u(nl)(r,O)fo(nD(r,O)=O, u(nl)(a,t)ffiu(nl)(a,t) au"°)<r'OI = o  
= at I,=o 

has the form 

a (I)- rllt tl) a'-~(rUn )+-~oi~ =0, n=l,2 .... 

ue,a + 1 
Dt = -"~"r V~+ r Dr 

+2S(oO)g(_I) n ¢tsin ot 
(n~) 2 - a  2 

Dva, nt|) = ~ pin0) + "[ J D~ar 2n (|) +rl aVar nil) 

_2S(oO)g(_l) n nnsin ct 
(nrO 2 - ot 2 

I n l t  O) 

where u, u are the radial and azimuthal components of the velocity, respectively. 

(3.5) 
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Solving problem (3.5) using the method of integral transforms in the same way as above in the case 
of St0 °), we obtain quadrature formulae for the first approximation of the velocity field 

( ? ) 2  i ~n(~'t)Ln(r'~) u(I)(r't)f-An ~{J~,, (a~) + 2 d~ ~',:. (,~)) 

o(i)(r,t )=_Or a~_ - ( I ) ,  
n~ c3r ( ' '*  j 

L,, = r ~ a  (Np,, (r~)Ju. (a~)- Jp. (r~)N~,, (a~)), 

0 ~-ks112t -e-V~2t 
K( )( . . . .  ¢~n=Jar2Lnar7 "~-a i 0 ( v~2_ksrl 2 

An = 2 g ( - 1 )  n as ina  
(n~)  ~ - a  ~ ,'to 

(3.6) 

n~ 

e } 
+ v~ 2 a~ dr 

The flow which has arisen distorts the zeroth approximation distribution S(0 °) and leads to the 
appearance of the corrections of the first approximation which are determined as the solution of a initial- 
boundary-value problem of the form 

ra~,,, ± aso'" / 
at 2r nffil ar  ( , °n  '6n ~ ar ) 

as'.', raise,, aS'o" ( ,,,q~ s'.', ) aS'o °, 
at k,L_~r_r2 ~ 1 r ar L-~; 7 - j  a r '  n=l,2 (3.7) 

as~' ks--~-r +ysS(l)lt=a =0, S(I)(r,O)=O, n = O , 1 , 2  . . . .  

It is clear from the first approximation that S(0 ]) = 0 since S~ °) = 0 when n = 1, 2 . . . . .  
The equations for S(omrwill subsequently have a form which is analogous to the equations for So O) 

from system (3.7) and, hence, S(o m) = 0, m = 1, 2 , . . .  and S~ ) = S00. 
On solving the remaining equations of (3.7) using the methiSd of integral transforms mentioned above, 

we obtain the first approximation corrections to the salinity distribution 

Sn(I) 2 COSCt 7 K(I)(r,~)G(I)(r,~)d~ 
= n - " ~ a  o 

Kntt) = a~n I + ~ m 2 (a~,l~, (a~)h + J~, (a~)f) 2 + (a~jV~, (a~)h + Np. (a~)f) 2)-I 

m, ffi J~. (a~)N~. (r~) - N'p. (a~)Jp. (r~). m 2 = Jp. (a~)N~. (r~) - N~n (a~)Jp. ( 4 )  

COS (I 
h(oO = c o s  ¢t, f ( l z )  = - sin Ix 

2 

(3.8) 

The function Gn0)(~, t) is the solution of the problem 

at."' ~k~r.(,,=~.,,,v,,.~aS'oo'd~ a."'(~.O)=O 

On continuing this process, the corrections of the following approximations can be obtained, the con- 
tribution of which to the overall velocity field, salinity field and pressure field distributions will decrease. 
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4. ANALYSIS OF THE RESULTS 

Certain qualitative conclusions can be drawn from the above results. The function G(nl)(r, ~), the 
characteristics of which, in their turn, are specified by the functions u, tl) and S~0 °), occurs in relation (3.8) 
which determine the first approximation corrections Sn 0) to the salinity distribution. The quantity S(0 °) 
is defined by relation (3.4) and the characteristic singularities of the velocity field u (1) are described by 
the integral representation of the function ~n(~, t) which occurs in relation (3.6). It is clear from (3.4), 
(3.6) and (3.8) that the integral representation for Sn (1) is singularly perturbed with respect to the 
parameter Sc = '](ks/v) which takes small values in real media (when Sc = 0 the order of the differential 
equations is reduced). This indicates that, in the present problem, it is impossible to neglect the effects 
of diffusion compared with viscous effects. 

The terms exp -v~2t, exp-ks ~2t and exp-ks ~-~2t occur in the kernels of the integral expressions (3.4), 
(3.6) and (3.8). In fact, they determine the formation of boundary flows both close to the walls as well 
as on the surface of the salt source. In the same way as described previously [3], terms of the first two 
types describe the formation of velocity and density boundary layers, the thickness of which at the initial 
instants of time increases as 8u - ~l(vt) and 8 o - ~/(kst). Meanwhile, unlike the results which have been 
obtained previously [3], the thickness of the layers in a trough of finite depth cannot increase without 
limit. A term of the last type characterizes the combination scale 8comb = (ksvt2)l/4, that is, unlike a 
flow close to an inclined plane, here there is only partial splitting of the scales. 

The solutions obtained are analytic with respect to all the physical variables, including ~'s in the sense that, 
when ~'s --> oo, all the solutions pass smoothly into the solutions of a problem in which the condition S(a, t) 
= S00 is used as the boundary condition on the source. Solutions for such boundary conditions are also 
obtained in the form of quadratures, but they are not given here. It should also be noted that the solutions 
are also analytic in the limiting cases when the "aperture" angle of the trough is a = 0 or a = 42. 

The use of asymptotic methods to evaluate the integrals for the case when ~ >> 1 enables one to 
obtain approximate results which describe the dynamics of the formation of the salinity distribution in 
the trough. 

For example, for the zeroth approximation, we obtain 

Sto°~(p, t)  = SooIeffc ~ - 2e -xcp- j) + e ' 'x2 e -xtp- I )  e r f c ( ; ~ . ~ .  - ~)]  (4.1) 

= p -  I r /c.t a% g 2--jG:-, p=-, x= 

It is clear that this distribution is characterized not only by a boundary layer (the first term in the 
square brackets) but also by an injection front (the last two terms). 

The extremely long expressions for the other asymptotic formulae are not presented here. 
It should be noted that there are two new variables ~ and ;~4(zs) - ~, obtained on the basis of the 

integral transforms, in the asymptotic solution (4.1). On the other hand, group-theory analysis of the 
initial system of equations (1.2) separates out these variables as invariants of the generators of the Lie 
group corresponding to Eqs (1.2). This fact indicates that it is possible to construct a more universal 
method for solving such problems which could simplify the derivation of the final formulae (although 
these would also be quadrature formulae). The essence of such an approach can be formulated as follows. 
In the first stage, a Lie group analysis of the boundary-value problem under investigation is carried 
out, the characteristic variables which are convenient for finding the solution are determined, and the 
problem is then formulated in these new variables. In the second stage, the method of integral transforms 
is applied to the reformulated problem, the execution of which is considerably facilitated since the 
variables corresponding to the boundary layers will be separated from the variables describing the 
structure of the injection fronts. 
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